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We show that Rabi oscillations between Bloch modes of an optical waveguide array with subwave-

length periodicity diverge, both in frequency and in field amplitude, when the optical wavelength

approaches a mathematical exceptional point at which the Bloch mode becomes self-orthogonal.
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Rabi oscillations [1] are known from quantum mechan-
ics, where a two-state system is driven periodically by an
electromagnetic (EM) field and undergoes periodic popu-
lation exchanges. They occur in diverse systems, such as
semiconductors [2,3], and Bose-Einstein condensates [4].
Recently, Rabi oscillations were proposed [5] and demon-
strated in paraxial photonics lattices [6]: a classical
system equivalent in many ways to quantum systems [7].
However, recent technologies make it possible to fabricate
structures narrower than the optical wavelength. In such
structures, the dynamics must to be analyzed through
Maxwell equations without approximation. The dynamics
in optical nanostructure can be fundamentally different
from that in above-wavelength systems, highlighting new
phenomena such as form birefringence [8], briefings [9],
lower-index guiding [10], optical forces on waveguides
[11], enhanced nonlinear effects [12], stimulated Raman
amplification [13], and ‘‘phoenix solitons’’ [14].

Here, we study Rabi oscillations between optical Bloch
modes in waveguide arrays of subwavelength periodicity.
We show that in this realization the Rabi frequency and
the electric field of the light diverge as the transition
approaches a unique point (known as ‘‘exceptional point,’’
EP) at which one of the optical Bloch modes becomes self-
orthogonal. We analyze the influence of back reflections,
which eventually govern the dynamics and stop the diver-
gence through a two-stage process. This unusual behavior
arises from the structure of Maxwell’s equations, which
can give rise to a mathematical EP when the field varies
rapidly at subwavelength scale. This phenomenon has no
equivalent in quantum systems where the physical poten-
tials are real.

First, we recall concepts related to non-Hermitian op-
erators and EPs. Non-Hermitian operators, which are used
to analyze systems with long-lived metastable states, ex-
hibit a unique form of singularity: singularity arising from
an EP. At an EP, not only do two sets of eigenvalues
coincide, but rather the eigenvectors themselves coalesce
[15]. EPs were identified in acoustics [16], microwaves
[17], and optical settings such as parity-time symmetric
structures [18,19], subwavelength structures [14], and dis-
sipative media [20]. The presence of EP in the spectrum
of an operator has physical significance. For example, the

convergence radius of perturbation theory is determined
by the EPs, and in parity-time symmetry problems the EP
manifests dramatic crossover from an entirely real spec-
trum to a complex spectrum [21]. At the vicinity of an EP,
unique effects can be observed, such as eigenstates ex-
change, appearance of a nontrivial geometric phase, and
mode crossing [17,18,20]. The hallmark of EPs is that, at
an EP, two sets of orthogonal eigenstates coalesce into a
single eigenstate, which is orthogonal to itself [22]. Hence,
mathematically, the wave functions associated with the EP
must have infinite amplitudes. Such unique properties of
EPs help to explain our results. Let us first derive the
existence of an EP in our system.
Our system is a nanoscale waveguide array with high-

index contrast. In our recent work [14] we formulated
Maxwell’s equations with a non-Hermitian matrix operator
Mð�i@z’ ¼ M’Þ. The non-Hermiticity ofM implies eva-
nescent bands, redefined orthogonality relations, and the
existence of EPs. Consider a waveguide array, periodic in
the x direction, uniform in y, and with z as the propagation
direction [Fig. 1(a)]. To induce Rabi oscillations, we later
introduce periodic modulations in z that couple the modes
of the structure. Maxwell’s equations in this structure, for
TE polarization, time harmonic fields are [14]
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where ~E ¼ Eŷ, ~H ¼ Hx̂þHzẑ are the electric and
magnetic fields, k0 is the vacuum wave number, and "
the dielectric permittivity. First we treat Eq. (1) as an

FIG. 1 (color online). (a) Refractive index structure of the
waveguide array, displaying the transverse and longitudinal
modulations. (b) Band structure for d ¼ 0:316 �m, �o ¼
1:4 �m, n1 ¼ 2, n2 ¼ 3. (c) Maximum amplitude of normalized
modes in band 3, showing the amplitude divergence at the EPs.
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eigenvalue equation [’Rðx; zÞ ¼ ~’RðxÞei�z], and find the
eigenmodes [23]. We find two sets of eigenvalues, grouped
into bands, as expected from a periodic problem "ðxÞ ¼
"ðxþDÞ: the forward and backward propagating modes,
possessing a positive or negative propagation constant,
respectively [Fig. 1(b), with K normalized by 1=D]. For
either of these modes, as �2 goes below zero, the corre-
sponding mode becomes evanescent, with a pure imagi-
nary propagation constant. When this crossover occurs
within a band, the forward and backward propagating
bands coincide at the crossover point [Fig. 1(b)]. As we
later show, the crossing point is an EP, at which two sets
of eigenvalues and eigenvectors coalesce.

We proceed with non-Hermitian tools. We redefine the
orthogonality relations via a biorthogonal basis composed
of ‘‘right’’ states ’R [defined by Eq. (1)], and ‘‘left’’ states
’L—eigenstates of the transposed operator Mt [21], and
labeled ’L

i , ’
R
i . For forward propagating waves

’R
i ¼ 1ffiffiffi
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The norm of an eigenstate according to the biorthogon-
ality relation is ð’L

i j’R
i Þ ¼ ð1=2ÞR dxð�H�

i Ei � E�
i HiÞ,

having the meaning of the Poynting vector in the propaga-
tion direction. Maxwell’s equations yield

ð’L
i j’R

i Þ ¼
Z

�jEij2dx: (3)

In the context of self-orthogonality, Eq. (3) proves that
if � ¼ 0, its corresponding eigenstate is self-orthogonal.
This property is a signature of an EP. Indeed, we find that at
the EP two mode coalesce. In this particular case of an EP
with EM waves, this result can be also understood intui-
tively: the difference between a forward and backward
propagating wave in the TE polarization is the orientation
of the magnetic field, and as� ! 0,Hx¼�ð�=k0ÞE!0.
Hence, the difference between the forward and backward
modes diminishes, until they coalesce at � ¼ 0. Equation
(3) implies that, for normalized modes, jEðxÞj / 1=

ffiffiffiffi
�

p
[Fig. 1(c)] Thus, the divergence is not restricted to a
singular point, but rather the whole region near the EP
diverges. This indicates that self-orthogonality is a physi-
cal phenomenon, not just an intriguing mathematical en-
tity. We obtain this result also numerically [Fig. 1(c)].

Next, we study Rabi oscillations between two Bloch
modes of a photonic lattice, where one is an ordinary
mode and the other is a mode at the vicinity of the EP.
Consider a structure in which the EP occurs in band 3
[Fig. 1(b)]. To facilitate Rabi oscillations, the refractive
index of the array is also modulated in the propagation
direction z, introducing resonant coupling (Rabi oscilla-
tions) between the ‘‘lowest’’ Bloch mode (band 1, K ¼ 0)
and the K ¼ 0 mode of band 3 (these modes have zero
power flow in the x direction). Light is launched into
the lowest Bloch mode—which is far away from the EP.
The Rabi oscillations induce periodic energy transfer from

mode 1 to mode 3 [Fig. 1(b)], whose associated eigenval-
ues are �0;1, �0;3. Since the band structure scales with �
(k0 ¼ 2�=�), varying � shifts the EP until it reaches the
K ¼ 0 point on band 3. It is hence possible to launch the
light into mode 1, and observe the power transferred into
a mode 3 that is brought closer and closer to the EP, by
varying � in a continuous fashion. As we later show, only
minute changes in � are needed, so that the ‘‘ordinary’’
excitation mode can effectively remain unchanged.
The periodic modulation of the dielectric permittivity

that could couple two such eigenmodes must have a spatial
dependence in both z and the x [5]. Let us take

"p ¼ fðxÞ cosð��zÞ; (4)

where fðxþDÞ ¼ fðxÞ, and �� ¼ �0;1 � �0;3. This

modulation enters the propagation operator as �i@z’ ¼
½Mþ VðxÞ cosð��zÞ�’; VðxÞ � ð 0

�k0fðxÞ
0
0Þ. Repeating

the textbook derivation of Rabi oscillations [5], with the
biorthogonality relation defined above yields
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� ½eið�K;n��K0 ;n0þ��Þz þ eið�K;n��K0 ;n0���Þz�;
(5)

where cK;n is the amplitude of the eigenmode with Bloch

momentum K from band n. Keeping only phase-matched
terms (see discussion below), we find Rabi oscillations
c0;1ðzÞ ¼ c0;1ð0Þ cosð�RzÞ, with the Rabi frequency

�R ¼ jð’L
0; 1jVðxÞj’R

0; 3Þj ¼ j
Z
ðE�

0; 1fðxÞE0; 3Þdxj: (6)

As the eigenmode E0;3 approaches the EP—its eigenvalue

� decreases and approaches zero. As we have shown, the
normalized electric field of the mode increases in propor-
tion to ��0:5 (jE0;3j���0:5), and thus the Rabi frequency

also diverges as jE0;3j approaches EP:
�R / ��0:5 !

�!0
1: (7)

Thus, both the field and the Rabi frequency—two observ-
able quantities—diverge as power law as the EP is ap-
proached. This divergence can be understood as a result of
the conservation of energy flux (power) in the z direction
(assuming the absence of back reflections). The modes
at the vicinity of the EP are characterized by a very
small propagation constant (�); thus, the energy flux
(Sz / �jEj2) becomes smaller as the EP is approached.
Consequently, the conservation of total power requires
the divergence of the field amplitude (as the flux is pro-
portional to the properly defined norm, which is also
conserved). Such a high field is accomplished through
a resonance effect in the x direction of the array, as a
consequence of Bragg reflections (for TM polarization,
Hy will be diverging, while Ex will be vanishing).

The above analytic derivation has one important as-
sumption: the absence of backscattering [keeping only
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phase-matched terms while going from Eqs. (5) to (6)].
This assumption has direct implications, because backscat-
tering implies that the energy flux along z is not conserved.
The reasoning is that the phase mismatch between the
forward and the backward waves is very large, and is not
balanced by the modulation in z. Our simulations below
prove the validity of this assumption, as long as we do not
get too close to the EP. However, the phase mismatch
between the forward and the backward waves becomes
smaller as the EP is approached, and is exactly zero at
the EP. Hence, the coupling between the forward and the
backward propagating waves is what prevents the field
amplitude and the Rabi frequency from diverging to infin-
ity. However, exactly at the EP, a two-step process becomes
very efficient: first, phase-matched coupling from the
forward propagating mode from band 1 to the forward
propagating ‘‘slow mode’’ of band 3, and subsequently
coupling between the forward propagating mode of
band 3 to the backward propagating mode of band 1.
This two-step process becomes efficient because its phase
mismatch 2�03z vanishes when �03 ¼ 0. Such a two-step
process could prevent the divergence of the modal ampli-
tudes, by providing a channel for power to escape from
being trapped in the ‘‘slow modes’’ at the close vicinity of
the EP. To investigate this, we later introduce an analytic
model accounting for coupling between forward and back-
ward propagation waves. However, as long as we do not
get too close to the EP, this ‘‘escape mechanism’’ is not
phase matched; hence, the Rabi frequency grows rapidly
as �R / ��0:5 as the EP is approached.

Next, we simulate the propagation dynamics, including
back reflections, by solving Maxwell’s equations with no
assumptions. We use the Finite Difference Time Domain
code (FDTD) by Rsoft�. In the simulations, the field is
launched into the waveguide array at z ¼ 0, and the peri-
odic modulation of the structure along the propagation
direction begins at z ¼ 5 �m. Our waveguide array has
refractive indices of n1 ¼ 2, n2 ¼ 3, and period D ¼
632 nm, giving rise to the band structure of Fig. 1(b). We
change the position of the EP in band 3 by varying �: as �
is increased, the EPmoves towardK ¼ 0, closer to mode 3.
We launch mode 1 into the waveguide array at z ¼ 0. The
periodic modulation in z is on the high-index regions only,
with "p ¼ 0:3 cosð��zÞ [Fig. 1(a)], and ��, the modal

mismatch, is found numerically. For the chosen parame-
ters, the EP for mode 3 occurs at � ¼ 1:521 �m.

When mode 3 is far from the EP (for � � 1:43 �m),
the oscillation period is large [> 30 �m; Fig. 2(a)]. As we
increase �, the EP moves towardK ¼ 0, and the oscillation
period becomes smaller [� ¼ 1:517 �m; Fig. 2(b)].
Clearly, the Rabi frequency is much higher in Fig. 2(b),
where mode 3 is closer to the EP. To obtain the
Rabi frequency, we project the ‘‘instantaneous wave func-
tion’’ onto the eigenmodes during propagation [Figs. 2(c)
and 2(d)], using the biorthogonality relation. From the
variation of mode 3 along z, it is clear that its propagation

constant �3 is much lower at � ¼ 1:517 �m [Fig. 2(d)]
than at � ¼ 1:43 �m [Fig. 2(c)], as expected—since E3 /
ei�3z (mode 1, being far from the EP, remains practically
unchanged when varying �). From these projections, we
extract the Rabi frequency as a function of � [Fig. 2(e)]. As
shown by the simulations (red dots) and the analytic curve
(blue line), the frequency diverges as ��0:5, exactly as
predicted by our analytics. We emphasize that this fre-
quency rising is achieved without changing the amplitude
of the periodic modulation V; hence, it is a direct outcome
of the anomaly at the EP where the corresponding mode
is self-orthogonal. This simulation proves that back reflec-
tions do not affect the results even when the eigenmodes
are extremely close to the EP (�0;3 ¼ 0:1). The main result

[Eq. (7)] is therefore proved analytically and numerically
(Fig. 2): the Rabi frequency and field amplitude diverge
with 1=

ffiffiffiffi
�

p
, as the EP is approached.

These FDTD simulations are sufficiently remote from the
EP where backscattering is negligible. However, as we get
closer to the EP, simulation time grows rapidly, rendering
FDTD impractical. To explore the dynamics in the limit

�0;3 ! 0, we introduce an analytic model based on

coupled mode theory [24], which also includes the back-
ward propagating waves (denoted by ‘‘-‘‘) in Eq. (5). The
first forward propagating mode evolves as

� i
@cþ01ðzÞ
@z

¼ cþ0;3ðzÞð’þL
0;1 jVðxÞj’þR

0;3 Þ þ c�0;1ðzÞ
� ð’þL

0:1 jVðxÞj’�R
0;3 Þe�ið2�0;3Þz (8)

The second term is negligible for �0;3 > 2�R, because

the power exchange with the backward propagating wave

FIG. 2 (color online). Rabi oscillations between two modes
associated with different bands of the waveguide array. (a),
(b) Field intensity at one unit cell for �o ¼ 1:43 �m and �o ¼
1:517 �m, respectively. The Rabi oscillations in (a) are the slow
variations. The fast oscillations reflect the short effective wave-
length inside the medium, not power transfer to mode 3; they
arise because the FDTD code yields the intensity at a specific time
(not the time-average intensity). (c),(d) Projections of the prop-
agating wave on Bloch modes 1,2,3 as a function of z, for �o ¼
1:43 �m and �o ¼ 1:517 �m. (e) Analytic (solid line) and
simulated (red dots) results displaying the oscillation frequency
divergence with 1=

ffiffiffiffi
�

p
dependence.
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(/ �R) is much slower than the mismatch term (/ �03).
However, for �0;3 < 2 ��R this term must be included. To

find the full dynamics, we solve four coupled equations
like Eq. (7), for each one of the amplitudes cþ0;1, c

þ
0;3, c

�
0;1,

c�0;3, coupling term "p ¼ ½fðxÞ cosð���zÞ;0;
0<z<L
else �. Figures 3(a)

and 3(b) display the total transmission T � jcþ0;1ðLÞj2 þ
jcþ0;3ðLÞj2 and the total reflection R � jc�0;1ð0Þj2 þ
jc�0;3ð0Þj2, as a function of �0;3, for L ¼ 13 �m, under

boundary conditions cþ0;1ð0Þ ¼ 1, cþ0;3ð0Þ ¼ 0, c�0;1ðLÞ ¼ 0,

c�0; 3ðLÞ ¼ 0, which properly describes launching mode

cþ0; 1 from z < 0 into the system. Figures 3(a) and 3(b)

reveal three distinct regimes. For �0;3 > 0:15k0
(regime I; �0;3 > 2 ��R), back reflections are negligible

(R ¼ 0, T ¼ 1), while Rabi oscillations between cþ0;1, c
þ
0;3

diverge as 1=
ffiffiffiffiffiffiffiffiffi
�0;3

p
[Fig. 3(c)]. For 0:004k0 <�0;3 <

0:15k0 (regime II), back reflections affect the dynamics
dramatically [Fig. 3(d)]: the oscillations no longer behave
as Rabi oscillations. For example, the phase between cþ0;1,
cþ0;3 is not �=2, the dynamics is sensitive to the modulation

length L, and the oscillation frequency does not diverge as
��0:5

0;3 . Finally, for �0;3 < 0:004k0 (regime III), reflections

govern the dynamics: power exchange between the modes
vanishes, and the entire incident wave is back reflected
[R ¼ 1, T ¼ 0; Fig. 3(e)]. This dynamics is similar to
Bragg reflection by a two-stage process where modes 3,
c�0;3 acts as mediator between cþ0;1 and c�0;1.

Under the parameters of Fig. 3, the optical intensity
grows by a factor of 10 as the EP is approached, before
back reflections prevail. Such growth in intensity is easily
observable experimentally by controlling a single ‘‘knob’’:
continuous variation of � with a tunable laser. However,
this ‘‘maximum growth’’ value is not a fundamental limit:
the maximal intensity value can be dramatically increased
through parameters optimization, e.g., by reducing the

coupling factor fðxÞ between the Bloch modes. This will
reduce �R, allowing one to get closer and closer to the EP
before back reflections become dominant, hence experi-
encing larger enhancements of the field amplitude.
To conclude, we studied optical Rabi oscillations in

subwavelength waveguide arrays, at the proximity of a
mathematical EP, and find that the oscillation frequency
and field amplitude diverge as the EP is approached. This
feature is unique to Rabi oscillations in optical systems,
as described by Maxwell equations. We find that small
changes in the optical wavelength can dramatically affect
the dynamics, offering an effective tool for light manipu-
lation in nanostructures, and can be used to switch on or off
nonlinear effects in a selective fashion. Last but not least,
the Rabi frequency can be used as an experimental observ-
able, to show that self-orthogonality involves observable
phenomena, allowing one to study the vicinity of the EP
in great detail. This work raises an interesting question:
is it possible to find an enhancement of the Rabi frequency
in a quantum system that supports an EP?
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FIG. 3 (color online). (a),(b) Total transmission and reflection
as a function of �03, for a coupling modulation length of L ¼
13 �m. Bottom panel is zoom-in around �03 ¼ 0 of the upper
one. The figures reveal three distinct regimes. (I) All the power is
transmitted; reflections are negligible. (II) Reflection becomes
significant. (III) Entire incident wave is back reflected. (c),(d),
(e) Propagation dynamics in each one of the regimes of (a),(b).
(c) �03 ¼ 0:3k0: Rabi oscillations between mode 1þ and mode
3þ , while reflected waves are negligible. (d) �03 ¼ 0:1k0:
intermediate regime, where reflections affect the dynamics, but
oscillations between the modes still occur. (e) �03 ¼ 0:001k0: all
the incident wave (mode 1þ) is reflected back (to mode 1�).
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